a2 United States Patent

US009141361B2

10) Patent No.: US 9,141,361 B2

Haber et al. (45) Date of Patent: Sep. 22, 2015

(54) METHOD AND APPARATUS FOR (52) U.S.CL
PERFORMANCE EFFICIENT ISA CPC oo GOGF 8/52 (2013.01); GOG6F 9/45558
VIRTUALIZATION USING DYNAMIC (2013.01)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

PARTIAL BINARY TRANSLATION

Applicants: Gadi Haber, Nesher (IL); Konstantin

Inventors: Gadi Haber, Nesher (IL); Konstantin
Kostya Levit-Gurevich, Kiryat Byalik
(IL); Esfir Natanzon, Haifa (IL); Boris
Ginzburg, Haifa (IL); Aya Elhanan,
Gan Yoshiya (IL); Moshe Maury Bach,
Haifa (IL); Igor Breger, Haifa (IL)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 538 days.

Appl. No.: 13/632,089

Filed: Sep. 30, 2012

Prior Publication Data

US 2014/0095832 Al Apr. 3,2014

Int. CL.

GO6F 9/30 (2006.01)

GO6F 9/45 (2006.01)

GO6F 9/455 (2006.01)

GO6F 11/36 (2006.01)

Kostya Levit-Gurevich, Kiryat Byalik
(IL); Esfir Natanzon, Haifa (IL); Boris
Ginzburg, Haifa (IL); Aya Elhanan,

Gan Yoshiya (IL); Moshe Maury Bach,

Haifa (IL); Igor Breger, Haifa (IL)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0031108 Al* 1/2009 Henryetal. 712/32

* cited by examiner
Primary Examiner — Scott Sun

(74) Attorney, Agent, or Firm — Mnemoglyphics,
Lawrence M. Mennemeier

LLC,

(57) ABSTRACT

Methods, apparatus and systems for virtualization of a native
instruction set are disclosed. Embodiments include a proces-
sor core executing the native instructions and a second core,
or alternatively only the second processor core consuming
less power while executing a second instruction set that
excludes portions of the native instruction set. The second
core’s decoder detects invalid opcodes of the second instruc-
tion set. A microcode layer disassembler determines if
opcodes should be translated. A translation runtime environ-
ment identifies an executable region containing an invalid
opcode, other invalid opcodes and interjacent valid opcodes
of the second instruction set. An analysis unit determines an
initial machine state prior to execution of the invalid opcode.
A partial translation of the executable region that includes
encapsulations of the translations ofinvalid opcodes and state
recoveries of the machine states is generated and saved to a
translation cache memory.

36 Claims, 7 Drawing Sheets

5410

‘ Detect Invalid Opcode
i

‘ Disassemble Invalid Opcode

};415

Translate?

Send Invalid Opcode Exception to
Operating System

Identify an Executable Region for the
Invalid Opcode

Analyze Executable Region for the Invalid

Generate Blnary Translation
Encapsulation for Invalid Opcode

Generate Partial Blnary Translation for
Entire Executable Region

Store Partial Binary Translatlon in Cache

Store an Indicator and Branch to Partial

‘ Generate Machlne State Recovery
‘ Binary Translation

U.S. Patent Sep. 22, 2015 Sheet 1 of 7 US 9,141,361 B2
System 100
L, S
Executable || || Exclusive D 4
: -Data i
Thread T1 ||| Execution 127]
Executable |[** I1EnX|ronment {
Thread T2 || | 104 Recovery ||
Memory Translation [* 128 ‘
102 e Runtime [D
Environment | || Executable || |
130 || Thread T2' || |
: : T-Cache |i| &
| DisAsm @ | 126 i 129
11 | | secondISA118i;
Executable || | Decoder 115 [+* Execution [+
Thread T2 <+ Registers 120 |«» Unit
Cache | !|i[[.RTR2..Rk 117
146 o Core (Processor) 116
T | Power
Executable First ISA 114 | Uf gge
Thread T1 5 ! —
Cach >« Decoder 111 [** Execution | |
ache = : !
142 Registers 110 [+* EJ? g Eower
‘|| R1R2...Rn — | | oSage
1471 i | 134
3! Core (Processor) 112 !

U.S. Patent Sep. 22, 2015 Sheet 2 of 7

US 9,141,361 B2

Processor 200

Registers 271 ||~ | Registers 272 Registers 277
R1 R2 ... Rn R1 R2 ...Rn R1 R2...Rn
Mask | IP[| || Mask | IP Mask [IP || .
“[Mask -] IP ["-[Mask -] IP| -] Mask -] IP |je]
T-Daa227 273, WWNo74% 2797V
Recovery \ ; .
<> 208 N %229 LA
Translation]
Runtime T2a||T2b T2
Environment (> DisAsm 225 ||| 261 262 267
230 | 4 ! | Executable Thread T2 |
T-Cache 226
Second ISA 218 |
, _ 247 s Decoder 215 [+* Execution =
Eiglclﬁli\cl)?] Registers 220 |e»| NIt I
| X ‘|| RTR2 ... Rk 217 '
i Environment ! C P 21
| 204 {E— ore (Processon 216 __|;
) First ISA 214 |
Executable ! S,
Thread T2 ||« 4-"1 * Decoder 211 ‘**‘ Execution
Cache Reglsters 210 ! > unit
246 Rn | | &8

' iig R1R2.

FIG. 2 s

U.S. Patent Sep. 22, 2015 Sheet 3 of 7 US 9,141,361 B2

Processor 300

Registers 371 Registers 372 || Registers 377 :
R1 R2 ... Rn R1 R2 ... Rn R1R2 ... Rn
Mask IP Mask IP Mask IP Ai
“[Mask -] IP| “| Mask | IP| “[Mask -| IP ||
T-Daager 373 b NNaz7al 3797V | |
; \ ‘ | |
Recovery
328 229 1+
v . !
. T1Cachedst | __
N] Thread T2 [___ | |
Translation *[T2a || T2 T2’
Runtimo |t| 361 | 362 367
Environment Lo RN 1
REREL 5 & EEEEECCE TR R
3401 Ui | T2a
' 341 | 343
iThread T2 <
247 Cache 346 344 349
¥ I S— > Second ISA 218 |
DisAsm 325 [«—| Decoder 215 [«*{ Execution [+f—>
. : : Unit i v
: Exclusive Execution ! Registers 220 1+ 217] i
| Environment (LR1R2... Rk —
304 Core (Processor) 216

U.S. Patent Sep. 22, 2015 Sheet 4 of 7 US 9,141,361 B2

Detect Invalid Opcode 5410

v
415
Disassemble Invalid Opcode S

Yes

Send Invalid Opcode Exceptionto | —425
Operating System

.| Identify an Executable Region for the 5’430
Invalid Opcode
v

Analyze Executable Region for the Invalid 5'435
Opcode

v
Generate Binary Translation | 5440
Encapsulation for Invalid Opcode

!

Generate Machine State Recovery 5’445
Structure

v
Generate Partial Binary Translation for | S~ 490
Entire Executable Region
o - . S 455

Store Partial Binary Translation in Cache
v

Store an Indicator and Branch to Partial | S~ 460
Binary Translation

__

U.S. Patent Sep. 22, 2015 Sheet 5 of 7 US 9,141,361 B2

Save Temporal Registers in Translation /<”510
Data Storage

v

Set Saved Registers Indicators and | S~ 220
Instruction Pointer

v
530
5 Set In-Capsule Flag S~
| {
Perform Binary Translation Emulation of | S~ 940
Invalid Opcode

v
Commit New Register and Memory State 5’550

v

Restore Temporal Registers from | 57960
Translation Data Storage

v
570
Clear In-Capsule Flag S

__

U.S. Patent Sep. 22, 2015 Sheet 6 of 7 US 9,141,361 B2

Detect Invalid Opcode 5610

v
615
Disassemble Invalid Opcode S

Yes

Send Invalid Opcode Exception to 5’625
Operating System

| ldentify an Executable Region for the 5’630
Invalid Opcode
v

Analyze Executable Region for the Invalid ;635
Opcode

v
Generate Binary Translation | 5640
Encapsulation for Each Invalid Opcode

v

Generate Machine State Recovery for All 5’645
Proximate Invalid Opcodes

v
Generate Partial Binary Translation for 5’650
Entire Executable Region
Er— — | S 695

Store Partial Binary Translation in Cache
v

Store a Branch Indicator and Branch to | S~ 660
Partial Binary Translation

__

U.S. Patent Sep. 22, 2015 Sheet 7 of 7 US 9,141,361 B2

1 702 ! |

: 710 | 1

; Fetch next instruction S~ o
B 715 2
. Yes Invalid i
L opcode? 750 |
B No 5 2
o Execute normally in second ISA p
S Disassemble instruction 57725
| 1703 3
P 730 »
o No Already Need to No Invalid |
i | [Translated Translate? T
Yes
Generate Partial Binary Translation for | S~ 739 |}
Entire Executable Region
: ¢ o0 |
Store and Branch to Translation Gache S
S7as | |G
o | Yes 18
i e 7604 | |
A 701 |

US 9,141,361 B2

1

METHOD AND APPARATUS FOR
PERFORMANCE EFFICIENT ISA
VIRTUALIZATION USING DYNAMIC
PARTIAL BINARY TRANSLATION

FIELD OF THE DISCLOSURE

This disclosure relates generally to the field of computers
and/or microprocessors. In particular, the disclosure relates to
Instruction Set Architecture (ISA) virtualization using
dynamic partial binary translation.

BACKGROUND OF THE DISCLOSURE

Binary translation in computers refers to the emulation of
one instruction set by another through translation of assembly
level code or instructions. Sequences of instructions are trans-
lated from the source instruction set to the target instruction
set. Static binary translation aims to convert all of the code of
an executable file into code that runs on the target architecture
without having to run the code first, as is done in dynamic
binary translation. This is very difficult to do correctly, since
not all the code can be discovered by the translator. For
example, some parts of the executable may be reachable only
through indirect branches, whose value is known only at
run-time.

Dynamic binary translation looks at a short sequence of
code—typically on the order of a single basic block—then
translates it and caches the resulting sequence. Code is only
translated as it is discovered and when possible branch
instructions are made to point to already translated and saved
code. In some cases such as instruction set simulation, the
target instruction set may be substantially the same as the
source instruction set, providing testing and debugging fea-
tures such as instruction trace, conditional breakpoints and
hot spot detection. Dynamic binary translation differs from
simple emulation (eliminating the emulator’s main read-de-
code-execute loop, which is a major performance bottle-
neck), paying instead a one-time large overhead during trans-
lation. Any such translation overhead is hopefully amortized
as translated code sequences are executed multiple times.

In partial binary translation, the native ISA code is
executed when possible and only parts of it are translated and
run from the translation cache area. This approach is suitable
for translating code from a central processing unit (CPU) of
one architecture to a CPU of a similar architecture type where
some subset of instructions may not be supported on the target
architecture. ISA consistency between similar but different
CPU types is important in systems that include heterogeneous
high-performance and power-efficient CPUs in order to pro-
duce superior performance per power capabilities.

However, ISA consistency among different CPU types is
considered a hard problem to solve due to the heavy con-
straints on manufacturing costs of the hardware and very tight
limits on the power consumption and chip areas for CPUs that
need to operate in small devices which do not typically
include elaborate cooling components. As a result, there is an
ISA gap between the lower-end embedded CPUs designed for
small low-power devices versus the high-end CPUs designed
for desktop computers or servers and include additional ISA
features for enhanced computation.

To date, potential solutions to such under utilization, fault
tolerance, performance and efficiency limiting issues have
not been adequately explored.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
not limitation in the figures of the accompanying drawings.

10

20

25

40

45

50

65

2

FIG. 1 illustrates one embodiment of an asymmetric mul-
tiprocessor system for providing Instruction Set Architecture
(ISA) virtualization using dynamic partial binary translation
functionality.

FIG. 2 illustrates one embodiment of a processor for pro-
viding ISA virtualization using dynamic partial binary trans-
lation functionality.

FIG. 3 illustrates an alternative embodiment of a processor
for providing ISA virtualization using dynamic partial binary
translation functionality.

FIG. 4 illustrates a flow diagram for one embodiment of a
process for using a dynamic partial binary translation runtime
environment to provide ISA virtualization.

FIG. 5 illustrates a flow diagram for an embodiment of a
process to use encapsulation in a dynamic partial binary
translation to provide ISA virtualization.

FIG. 6 illustrates a flow diagram for another alternative
embodiment of a process to use dynamic partial binary trans-
lation functionality to provide ISA virtualization.

FIG. 7 illustrates a flow diagram for another alternative of
a process to use dynamic partial binary translation function-
ality to provide ISA virtualization.

DETAILED DESCRIPTION

Methods, apparatus and computing systems are disclosed
herein comprising addressable memory to store executable
threads or program portions encoded in a particular native
instruction set. Some embodiments include a multiprocessor
or multiple core processor with one heterogeneous processor
core to execute the native instruction set in which the execut-
able threads or program portions are encoded, and a second
heterogeneous processor core having a second instruction set
excluding at least some portion of the native instruction set.
Other embodiments may include only the second processor
core type, which may be less complex, and/or more cost
effective, and/or consume less power than a processor core to
execute the entire native instruction set in which the execut-
able threads or program portions are encoded.

Embodiments of the second heterogeneous processor core
may also include an instruction decoder to receive executable
thread portions or program portions in their native instruction
set, and detect opcodes which are invalid opcodes of the
second instruction set. In some embodiments, a microcode
layer disassembler of the second heterogeneous processor
core may determine ifthe invalid opcode belongs to the native
instruction set in which the executable threads or program
portions are encoded, and hence should be translated. A trans-
lation runtime environment of some embodiments of the sec-
ond heterogeneous processor core may then identify an
executable region containing the invalid opcode and at least
any other proximate invalid opcodes and interjacent valid
opcodes of the second instruction set for executing, and
optionally repeatably re-executing upon future detection of
the invalid opcode. Embodiments of a translation runtime
environment of the second processor core may also include an
analysis unit to analyze the executable region to determine at
least an initial machine state prior to the execution of the
invalid opcode. The translation runtime environment gener-
ates a partial binary translation of the entire executable
region, the partial binary translation including at least an
encapsulation of a binary translation of the invalid opcode and
a state recovery mechanism of the initial machine state. An
indicator is stored of the partial binary translation associated
with the invalid opcode, and the partial binary translation is
saved to an exclusive translation cache memory for re-execut-
ing upon future detection of the invalid opcode.

US 9,141,361 B2

3

In the disclosure that follows, terms such as threads, pro-
grams, and processes may be used interchangeably to
describe embodiments of instruction sequences or command
sequences of programming languages or machine languages
or both, or alternatively as the executing sequences them-
selves or as the processing devices executing the sequences.
Through partial binary translation, executable threads or pro-
gram portions encoded in a particular native instruction set
may be executed by a second heterogeneous processor core
having a second instruction set that excludes at least some
portion of the native instruction set, and which may be less
complex, and/or more cost effective, and/or consume less
power than a processor core to execute the entire native
instruction set. Thus the native ISA is virtualized by a pro-
cessor without requiring operating system knowledge of, or
assistance in the partial binary translation.

It will be appreciated that for embodiments to support
instructions of a first processing core using a second process-
ing core, where the first and second cores may use differing
amounts of power during execution of the same portions of
executable threads of instructions, provides opportunities to
save costs and/or power consumption for some applications,
while supporting features of a richer native instruction set of
the first processing core. The second core may consume a
smaller maximum power during normal operation at maxi-
mum frequency and voltage due to having fewer logic ele-
ments, different semiconductor construction, less complex
micro-architectural components, and so forth. Thus benefits
such as cost savings and/or reduced power consumption may
be realized by various embodiments of the herein disclosed
methods, apparatus and systems for virtualization of a native
instruction set.

These and other embodiments of the present invention may
be realized in accordance with the following teachings and it
should be evident that various modifications and changes may
be made in the following teachings without departing from
the broader spirit and scope of the invention. The specifica-
tion and drawings are, accordingly, to be regarded in an illus-
trative rather than a restrictive sense and the invention mea-
sured only in terms of the claims and their equivalents.

FIG. 1 illustrates one embodiment of an asymmetric mul-
tiprocessor system 100 for providing ISA virtualization using
dynamic partial binary translation functionality. As described
herein, this architecture provides for migration of program
code between cores using dynamic partial binary translation
functionality.

A memory 102 comprises computer-readable storage
media (CRSM) and may be any available physical media
accessible by a processing core or other device to implement
the instructions stored thereon or store data within. The
memory 102 may comprise a plurality of logic elements
having electrical components including transistors, capaci-
tors, resistors, inductors, memristors, and so forth. The
memory 102 may include, but is not limited to, random access
memory (RAM), read-only memory (ROM), electrically
erasable programmable read-only memory (EEPROM), flash
memory, magnetic storage devices, and so forth.

Within the memory 102 may be stored an operating system
(not shown). The operating system is configured to manage
hardware and services within the system 100 for the benefit of
the operating system (OS) and one or more applications.
During execution of the OS and/or one or more applications,
one or more threads, e.g. executable threads T1 and T2, are
stored for execution by a core or other processor. Each of the
executable threads T1 and T2 in this example may be encoded
in a particular native instruction set, e.g. the instruction set of
the first ISA 114. In some embodiments the instruction set of

25

40

45

4

the first ISA 114 may comprise x86 instructions including, for
example, Advanced Vector Extension (AVX) instructions for
execution by Intel® microprocessors and/or AMD micropro-
Cessors.

Embodiments of asymmetric multiprocessor system 100
also comprise a first heterogeneous processor core 112 hav-
ing a first instruction set, e.g. the instruction set of the first ISA
114, and a second heterogeneous processor core 116 having a
second instruction set, e.g. the instruction set of the second
ISA 118, and excluding a portion of the first instruction set,
for example, excluding support for some or all of the AVX
instructions of the first ISA 114.

In some implementations the first core 112 and the second
core 116 may be coupled to one another using a bus or
interconnect 147. The interconnect 147, as is the case with
other interconnects herein described, may be arranged as a
mesh interconnect, a shared interconnect, a peer-to-peer
(P2P) interconnect, a ring interconnect, and so forth.
Although only one first core 112 and one second core 116 are
depicted, it will be appreciated that multiple first cores 112
and second cores 116 may be included in some embodiments.
The first core 112 and the second core 116 may be configured
to share cache memory or other logic. As used herein, cores
include, but are not limited to, central processing units
(CPUs), graphics processing units (GPUs), floating point
units (FPUs) and so forth. The first core 112 and second core
116 may use differing amounts of power during execution of
the same portions of executable threads of instructions. For
example, the first core 112 may consume a first maximum
power during normal operation at a maximum frequency and
voltage within design specifications for these cores. The first
core 112 may be configured to enter various lower power
states including low power or standby states during which the
first core 112 consumes a first minimum power, such as zero
when off. In contrast, the second core 116 may consume a
second maximum power during normal operation at a maxi-
mum frequency and voltage within design specification for
these cores. The second maximum power may be less than the
first maximum power. This may occur for many reasons,
including the second core 116 having fewer logic elements
than the first cores 112, different semiconductor construction,
and so forth. As shown here, a graph depicts maximum power
usage 134 of'the first core 112 compared to maximum power
usage 136 of the second core 116. The power usage 134 is
greater than the power usage 136.

The first core 112 comprises a first set of registers 110, an
instruction decoder 111 to receive an executable thread por-
tion, e.g. a portion of a copy of executable thread T1 from
cache 142, and an execution unit 113 to execute the execut-
able thread portion. It will be appreciated that core 112 may
comprise more that one execution unit 113 and additional
logic (not shown) to execute the executable thread portion, a
description of which is not required for an understanding of
the present example. The second core 116 comprises a second
set of registers 120, an instruction decoder 115 to receive an
executable thread portion, e.g. a portion of a copy of execut-
able thread T2 from cache 146, and an execution unit 117 to
execute the instruction set of the second ISA 118. The second
set of registers 120 may or may not include the same number,
or types, or sizes of registers as the first set of registers 110,
and in some embodiments those registers of the first set of
registers 110 not in registers 120 may be emulated using
translation data storage 127 and accessed via a bus or inter-
connect 129. It will also be appreciated that core 116 may
comprise more that one execution unit 117 and additional
logic (not shown) to executed the instruction set of the second
ISA 118, a description of which is not required for an under-

US 9,141,361 B2

5

standing of the present example. The instruction decoder 115
of second core 116, in addition to receiving the portion of
executable thread T2, may detect an invalid opcode in the
instruction set of the second ISA 118. In particular the invalid
opcode may be a valid opcode of the excluded portion of the
first instruction set the first ISA 114.

Some portion of asymmetric multiprocessor system 100,
e.g. an exclusive execution environment 104, may comprise a
microcode layer disassembler 125 to determine if the invalid
opcode should be translated. If so a translation runtime envi-
ronment 130 can be used to identify an executable region
containing the invalid opcode and any other proximate invalid
opcodes and interjacent valid opcodes, so that a partial binary
translation of the entire executable region may be generated
for executing and optionally re-executing the invalid opcode.
The executable region is analyzed by translation runtime
environment 130 logic, which in some embodiments may
comprise an analysis unit, to determine at least a first machine
state prior to the execution of the invalid opcode, and poten-
tially any other machine states prior to execution of other
proximate invalid opcodes so that a state recovery mechanism
128 can be used in conjunction with execution unit 117 to
restore the corresponding machine state from translation data
storage 127 upon an occurrence of a fault of other interruption
during execution of the invalid opcode translation. Transla-
tion runtime environment 130 logic as well as other mecha-
nisms and/or logic described herein may comprise dedicated
hardware or software or firmware operation codes executable
by general purpose machines or by special purpose machines
or by a combination of both.

A partial binary translation of the entire executable region
is then generated by translation runtime environment 130
logic, the partial binary translation including at least an
encapsulation of a binary translation of the invalid opcode and
the state recovery mechanism of the corresponding first
machine state. An indicator of the partial binary translation is
associated with the invalid opcode for re-executing the invalid
opcode in the future. The partial binary translation of the
entire executable region may be stored in a translation cache
126 and the executable region of the invalid opcode is emu-
lated by core 116 executing a portion of executable thread T2'
from cache 126, which is translated into the instruction set of
the second ISA 118.

It will be appreciated that at an arbitrary point within the
partial binary translation of an executable region, the proces-
sor or core machine state may be different from the virtual-
ized native state. Before passing control from the exclusive
execution environment 104 and/or a translation cache 126
execution mode, to a native cache 146 execution mode, e.g.
upon occurrence of external interrupts, exceptions, or at the
end of a translation, the processor or core machine state may
need to be recovered and/or restored. This may include recov-
ery of architectural programmer accessible registers, and/or
instruction pointer recovery. In one embodiment the instruc-
tion pointer within exclusive execution environment 104 and/
or a translation cache 126 execution mode is fully virtualized,
and instruction pointer recovery from within an encapsula-
tion of a binary translation of an invalid opcode may be
facilitated through storing an offset from an original page’s
linear address to an original instruction pointer (IP) for the
invalid opcode in translation data storage 127 as part of the
state recovery mechanism of the corresponding machine
state. For other interjacent valid opcodes occurring between
the original invalid opcodes, the trace runtime environment
130 may maintain a data structure to hold a mapping of
instruction offsets within pages of the partial binary transla-
tion, to instruction offsets within their original pages of the

10

15

20

25

30

35

40

45

50

55

60

65

6

native untranslated code to facilitate instruction pointer
recovery outside an encapsulation.

FIG. 2 illustrates one embodiment of a processor 200 for
providing ISA virtualization using dynamic partial binary
translation functionality. During the execution of programs of
one or more applications, operating systems, drivers, etc., one
or more threads, e.g. executable thread T2, are stored, e.g. in
cache 246, for execution by a core or other processor. The
executable threads in this example may be encoded in a par-
ticular native instruction set, e.g. the instruction set of a first
ISA 214.

Embodiments of processor 200 optionally comprise a first
heterogeneous processor core 212 having a first instruction
set, e.g. the native instruction set of the first ISA 214, and
comprise a second heterogeneous processor core 216 having
a second instruction set, e.g. the instruction set of the second
ISA 218, excluding a portion of the first instruction set, for
example, excluding support for some of the native instruc-
tions of the first ISA 214.

In some implementations the optional first core 212 and the
second core 216 may be coupled to one another and to other
components, such as cache 246 and a translation runtime
environment 230, using a bus or interconnect 247. In some
implementations the optional first core 212 may be instanti-
ated through virtualization technology and dynamic partial
binary translation functionality. The optional first core 212
and the second core 216 may be configured to share cache
memory 246 or other logic.

The optional first core 212 comprises a first set of registers
210, an instruction decoder 211 to receive an executable
thread portion, e.g. a portion of a copy of executable thread T2
from cache 246, and an execution unit 213 to execute the
executable thread portion. It will be appreciated that optional
first core 212 may comprise more that one execution unit 213
and additional logic (not shown) to execute the executable
thread portion, a description of which is not required for an
understanding of the present example. The second core 216
comprises a second set of registers 220, an instruction
decoder 215 to receive an executable thread portion, e.g. a
portion of a copy of executable thread T2 from cache 246, and
an execution unit 217 to execute the instruction set of the
second ISA 218. The second set of registers 220 may or may
not include the same number, or types, or sizes of registers as
the first set of registers 210, and in some embodiments those
registers of the first set of registers 210 not in registers 220
may be emulated using translation data storage 227, e.g. by
one or more copies of registers 271, 272, 277, etc., and
accessed via a bus or interconnect 229. Some embodiments of
translation data storage 227 provide for a mask to indicate
which registers have been saved, or are emulated, and/or need
to be restored by a dynamic state recovery mechanism 228. In
addition, the translation runtime environment 130 may main-
tain information with regard to emulated registers to facilitate
virtualization of the first ISA 214. For example, if the AVX
256-bit YMM registers are being emulated using 128-bit
XMM registers in an x86 ISA, translation runtime environ-
ment 130 may maintain the following information:

(a) an index of the XMM register used as a temporal reg-
ister to hold the upper part of an AVX instruction destination;

(b) an indicator of whether the destination of the AVX
instruction is a register or memory operand;

(c) in the case of a register destination in (b) an index of the
destination YMM register; and

(d) in the case of a memory destination in (b) indices of
general purpose registers holding the base address and hold-
ing the memory index, the scale and displacement values. In
addition, other information may be maintained by translation

US 9,141,361 B2

7

runtime environment 130, such as: the original AVX instruc-
tion length, and a starting and ending point of any code
sequence to commit the new register and/or memory state as
the result of the emulated instruction. For alternative embodi-
ments, such indications and information may be implicit or
integrated into translation data storage 227. It will also be
appreciated that core 216 may comprise more that one execu-
tion unit 217 and additional logic (not shown) to executed the
instruction set of the second ISA 218, a description of which
is not required for an understanding of the present example.
The instruction decoder 215 of second core 216, in addition to
receiving the portion of executable thread T2, may detect an
invalid opcode in the instruction set of the second ISA 218. In
particular the invalid opcode may be a valid opcode of the
excluded portion of the first instruction set the first ISA 214.

Some portion of processor 200, e.g. an exclusive execution
environment 204, may comprise a microcode layer disassem-
bler 225 to determine if the invalid opcode should be trans-
lated. If so a translation runtime environment 230 can be used
to identify an executable region containing the invalid opcode
and any other proximate invalid opcodes and interjacent valid
opcodes, so that a partial binary translation of the entire
executable region may be generated for executing and option-
ally re-executing the invalid opcode. The executable region is
analyzed by translation runtime environment 230 logic to
determine at least a first machine state prior to the execution
of the invalid opcode, and potentially any other machine
states prior to execution of other proximate invalid opcodes so
that a state recovery mechanism 228 can be used in conjunc-
tion with translation data storage 227 and execution unit 217
to restore the machine state upon an occurrence of a fault or
other interruption during execution of the translated invalid
opcode. For one embodiment, if such an occurrence of a fault
or other interruption during execution of the translated invalid
opcode happens before the beginning of any code sequence to
commit new register and/or memory state as a result of the
translated invalid opcode, then recovery of the machine state
just before emulating the invalid opcode may be performed.
On the other hand, if a fault or interruption occurs during or
after any code sequence to commit new register and/or
memory state as a result of the translated invalid opcode, then
recovery of the machine state as it would appear just after
executing the invalid opcode may be performed.

A partial binary translation of the entire executable region
is generated by translation runtime environment 230 logic.
The partial binary translation includes at least an encapsula-
tion of a binary translation of the invalid opcode and the state
recovery mechanism ofthe corresponding first machine state,
e.g. 273. Some embodiments of the partial binary translations
may include an encapsulation of a binary translation of each
invalid opcode of the entire executable region and a corre-
sponding state recovery mechanism of each corresponding
machine state, as shown by 273. An indicator of the partial
binary translation is associated with the invalid opcode for
re-executing the invalid opcode in the future. The partial
binary translation of the entire executable region, e.g. T2'a
261, may be stored in a translation cache 226 and the execut-
able region of the invalid opcode is emulated by core 216
executing the portion, e.g. T2'a 261, of executable thread T2'
from cache 226, which has been translated into the instruction
set of the second ISA 218. Following a successful completion
of the executable region, core 216 performs a jump to the
instruction pointer (IP) at the end of the executable region in
the executable thread T2. For some embodiments this jump
may be accompanied by a side effect of committing, restoring
or updating any necessary machine and/or memory state
using, at least in part, state recovery mechanism 228. Simi-

10

15

20

25

30

35

40

45

55

60

65

8

larly, for each subsequent detection of an untranslated opcode
of the excluded portion of the first instruction set of the first
ISA 214, a partial binary translation of the entire executable
region is generated by translation runtime environment 230
logic. These partial binary translations include at least encap-
sulations of binary translations of the respective invalid
opcodes, and the state recovery mechanism of the corre-
sponding first machine states, e.g. 274 . . . 279. Indicators of
the partial binary translations are associated with the invalid
opcodes for re-executing the invalid opcodes in the future.
The partial binary translations of the entire executable
regions, e.g. T2'b 262 . . . T2 267, may be stored in a
translation cache 226 and the executable regions of the invalid
opcodes are emulated by core 216 executing the portions, e.g.
T2 262 . . . T2 267, of executable thread T2' from cache
226, which have been translated into the instruction set of the
second ISA 218.

FIG. 3 illustrates an alternative embodiment of a processor
300 for providing ISA virtualization using dynamic partial
binary translation functionality. During the execution of pro-
grams of one or more applications, operating systems, driv-
ers, etc., one or more threads, e.g. executable thread T2, are
stored, e.g. in cache 346, for execution by a core or other
processor. The executable threads in this example may be
encoded in a particular native instruction set, e.g. the instruc-
tion set of first ISA 114 or first ISA 214.

Embodiments of processor 300 comprise a processor core
216 having a second instruction set, e.g. the instruction set of
the second ISA 218, excluding a portion of the first instruc-
tion set, for example, support for some of the native instruc-
tions of first ISA 114 or first ISA 214.

In some implementations the second core 216 may be
coupled to other components, such as cache 346, translation
cache 326, and a translation runtime environment 330, using
a bus or interconnect 247. In some implementations an
optional first core, having a native instruction set, e.g. the
instruction set of first ISA 114 or first ISA 214, may be
instantiated through virtualization technology and dynamic
partial binary translation functionality. The optional first core
may comprise a first set of registers, e.g. registers 371, regis-
ters 372, . . . registers 377, an instruction decoder 215 to
receive an executable thread portion, e.g. a portion of a copy
of executable thread T2 from cache 346, and an execution unit
217 to virtually execute the executable thread portion. The
second core 216 comprises a second set of registers 220, an
instruction decoder 215 to receive an executable thread por-
tion, e.g. a portion of a copy of executable thread T2 from
cache 346, and an execution unit 217 to execute the instruc-
tion set of the second ISA 218. The second set of registers 220
may or may not include the same number or types or sizes of
registers as the first set, e.g. of registers 371, registers 372, . .
. registers 377, and in some embodiments those registers of
the first set of registers not in registers 220 may be emulated
using translation data storage 327 and accessed via a bus or
interconnect 229. Some embodiments of translation data stor-
age 327 provide for a mask to indicate which registers have
been saved, or are emulated, and/or need to be restored by a
dynamic state recovery mechanism 328. For alternative
embodiments such an indication may be implicit or may be
integrated into translation data storage 327. The instruction
decoder 215 of core 216, in addition to receiving the portion
of executable thread T2, may detect an invalid opcode in the
instruction set of the second ISA 218. Of particular impor-
tance, the invalid opcode may be a valid opcode of the
excluded portion of the native instruction set, e.g. of the first
ISA 114 or the first ISA 214.

US 9,141,361 B2

9

Some portion of processor 300, e.g. an exclusive execution
environment 304, may comprise a microcode layer disassem-
bler 325 to determine if the invalid opcode should be trans-
lated. If so a translation runtime environment 330 can be used
to identify an executable region containing the invalid opcode
and any other proximate invalid opcodes and interjacent valid
opcodes, so that a partial binary translation of the entire
executable region may be generated for executing and option-
ally re-executing the invalid opcode. The executable region is
analyzed by translation runtime environment 330 logic to
determine at least a first machine state prior to the execution
of the invalid opcode, and potentially any other machine
states prior to execution of other proximate invalid opcodes so
that a state recovery mechanism 328 can be used in conjunc-
tion with translation data storage 327 and execution unit 217
to restore the machine state upon an occurrence of a fault or
other interruption during execution of the translated invalid
opcode.

A partial binary translation of the entire executable region
is generated by translation runtime environment 330 logic.
The partial binary translation includes at least an encapsula-
tion of a binary translation of the invalid opcode and the state
recovery mechanism ofthe corresponding first machine state,
e.g. 373. Some embodiments of the partial binary translations
may include an encapsulation of a binary translation of each
invalid opcode of the entire executable region and a corre-
sponding state recovery mechanism of each corresponding
machine state, as shown by 373. An indicator of the partial
binary translation is associated with the invalid opcode for
re-executing the invalid opcode in the future. The partial
binary translation of the entire executable region, e.g. T2'a
361, may be stored in a translation cache 326 and the execut-
able region of the invalid opcode is emulated by core 216
executing the portion, e.g. T2'a 361, of executable thread T2'
from cache 326, which has been translated into the instruction
set of the second ISA 218. Following a successful completion
of the executable region, core 216 performs a jump to the
instruction pointer (IP) at the end of the executable region in
the executable thread T2, e.g. 343. For some embodiments
this jump may be accompanied by a side effect of committing,
restoring or updating any necessary machine and/or memory
state, e.g. 373, using, at least in part, state recovery mecha-
nism 328. Similarly, for each subsequent detection of an
untranslated opcode of the excluded portion of the native
instruction set, e.g. of the first ISA 114 the first ISA 214, a
partial binary translation of the entire executable region is
generated by translation runtime environment 330 logic.
These partial binary translations, e.g. T2'b 362 . . . T2'1 367,
include at least encapsulations of binary translations of the
respective invalid opcodes, and the state recovery mechanism
of their corresponding machine states, e.g. 374 . . . 379.
Indicators of the partial binary translations are associated
with the invalid opcodes for re-executing the invalid opcodes
in the future. The partial binary translations of the entire
executable regions, e.g. T2'b 362 .. . T2'i 367, may be stored
in a translation cache 326 and the executable regions of the
invalid opcodes are emulated by core 216 executing the por-
tions, e.g. T2'6 362 ... T2'1 367, of executable thread T2' from
cache 326, which have been translated into the instruction set
of the second ISA 218.

It will be appreciated that following partial binary transla-
tion of an executable thread T2 as shown the core 216 may
emulate portions of the native instruction set, e.g. of the first
ISA 114 the first ISA 214, in the execution of executable
thread T2, by executing the code sequences: 340, 361 (corre-
sponding to T2a 341), 343, 362 (corresponding to T2b 342),
344, . ..367 (corresponding to T2i 347), and 349. It will also

5

10

15

20

25

30

40

45

50

55

60

65

10

be appreciated that exclusive execution environment 304 sup-
ports dynamic state recovery 328 for the encapsulation of a
binary translation of each invalid opcode based on the corre-
sponding state recovery mechanisms, e.g. one or more copies
of registers 371 0f 373, one or more copies of registers 372 of
374, . . . one or more copies of registers 377 of 379, and a
corresponding instruction pointer for the respective encapsu-
lation. Following a successful completion or upon interrup-
tion in the executable region in exclusive execution environ-
ment 304, core 216 performs a global jump either to the
corresponding instruction pointer of the executable region in
the executable thread T2, for the encapsulation successfully
completed, or to the corresponding instruction pointer of the
executable region in the executable thread T2, for the encap-
sulation interrupted, with a side effect of committing, restor-
ing or updating the machine and/or memory state according
to the corresponding state recovery mechanism.

It will be appreciated that embodiments to support instruc-
tions of a first processing core using a second processing core,
wherein the first and second cores may use differing amounts
of power during execution of the same portions of executable
threads of instructions, provide opportunities to save costs
and/or power consumption, while supporting features of a
rich native instruction set of the first processing core. The
second core may consume a less power during normal opera-
tion at maximum frequency and voltage due to having a less
complex micro-architecture with portions having fewer logic
elements, different semiconductor construction, and so forth.
Thus cost savings and/or reduced power consumption may be
realized by various embodiments of the herein disclosed
methods, apparatus and systems for virtualization of a native
instruction set.

FIG. 4 illustrates a flow diagram for one embodiment of a
process 401 for using a dynamic partial binary translation
runtime environment to provide ISA virtualization. Process
401 and other processes herein disclosed are performed by
processing blocks that may comprise dedicated hardware or
software or firmware operation codes executable by general
purpose machines or by special purpose machines or by a
combination of both.

In processing block 410 an invalid opcode is detected, e.g.
by decoder 115 or 215. In processing block 415 the invalid
opcode is disassembled, e.g. by a microcode layer disassem-
bler. Then in processing block 420 it is determined if the
invalid opcode should be translated, that is to say if it is a valid
opcode of the excluded portion of the native instruction set,
e.g. of the first ISA 114 or the first ISA 214. If not, then an
invalid opcode exception may be sent to an operating system
for exception handling in processing block 425. Otherwise,
translation will proceed in processing block 430 where an
executable region containing the invalid opcode and at least
any other proximate invalid opcodes and interjacent valid
opcodes is identified. In processing block 435 the executable
region is analyzed to determine at least a first machine state
prior to the execution of the invalid opcode. Processing pro-
ceeds to processing block 440 where a binary translation
encapsulation of the invalid opcode is generated and in 445 a
machine state recovery mechanism structure is generated for
the first machine state. In processing block 450 a partial
binary translation of the entire executable region is generated
including an encapsulation of a binary translation and state
recovery for the invalid opcode and any other proximate
invalid opcodes together with any interjacent valid opcodes of
the executable region. In processing block 455 the partial
binary translation is stored in a cache memory, e.g. translation
cache 126, 226 or 326. Then in processing block 460, an
indicator of the partial binary translation associated with the

US 9,141,361 B2

11

invalid opcode is stored to facilitate re-executing the partial
binary translation upon future detections of the invalid
opcode, and a branch is taken to execute the partial binary
translation. For some embodiments storing an indicator of the
partial binary translation may include storing a jump to the
partial binary translation code in the original executable
region, or introducing a special exception to the fetching of an
instruction of the executable region, or marking a page to be
checked when fetching an instruction of the executable
region. For some alternative embodiments, storing an indica-
tor of the partial binary translation may also include introduc-
ing a taken branch into a branch target buffer entry for the
cache line of an instruction of the executable region, and/or
storing a branch to the partial translation in another partial
binary translation to facilitate chaining the two partial binary
translations together.

FIG. 5 illustrates a flow diagram for an embodiment of a
process 501 to use encapsulation in a dynamic partial binary
translation. In some embodiments an encapsulation 501 of
each invalid opcode in the entire executable region may be
sued to provide ISA virtualization. In processing block 510
temporal registers are saved in translation data storage, e.g.
storage 127, 227 or 327. In processing block 520, saved
register indicators and instruction pointer(s) are set, e.g. 273,
247, ...279,0r373,347, ...379. In processing block 530, an
in-capsule flag is set to indicate that execution is within the
capsule. In some embodiments the in-capsule flag may be
included in a bit mask associated with the saved machine state
illustrated in FIGS. 2 and 3, or alternatively the in-capsule
flag may be set and accessed according to some other execu-
tion mechanism such as roll-back instructions to restore
architectural registers to previously recorded execution
checkpoint states. Processing then proceeds to processing
block 540 where the binary translation emulation of the
invalid opcode is performed. Then in processing block 550
the new register state and/or memory state is committed, and
in processing block 560 the temporal registers are restored
from translation data storage. Finally, in processing block 570
the in-capsule flag is cleared to indicate that execution is now
outside the capsule. It will be appreciated that various kinds of
optimizations may be applied to encapsulations of the invalid
opcodes, both within a capsule and across capsules, such as:
the setting and clearing of saved register indicators in a bit
mask may be removed from inside the capsule, or making use
of “free” unused registers, or loop unrolling and instruction
scheduling, etc.

FIG. 6 illustrates a flow diagram for another alternative
embodiment of a process 601 to use dynamic partial binary
translation functionality to provide ISA virtualization. In pro-
cessing block 610 an invalid opcode is detected, e.g. by
decoder 115 or 215. In processing block 615 the invalid
opcode is disassembled, e.g. by a microcode layer disassem-
bler. Then in processing block 620 it is determined if the
invalid opcode should be translated, that is to say if it is a valid
opcode of the excluded portion of the native instruction set,
e.g. of the first ISA 114 or the first ISA 214. If not, then an
invalid opcode exception may be sent to an operating system
for exception handling in processing block 625.

Otherwise, translation will proceed in processing block
630 where an executable region containing the invalid opcode
and at least any other proximate invalid opcodes and interja-
cent valid opcodes is identified. In processing block 635 the
executable region is analyzed to determine at least a first
machine state prior to the execution of the invalid opcode.
Processing proceeds to processing block 640 where a binary
translation encapsulation, e.g. as shown in process 501, of
each invalid opcode in the entire executable region is gener-

20

40

45

50

12

ated. In processing block 645 a machine state recovery
mechanism structure is generated for each of the machine
states corresponding to the invalid opcode and any other
proximate invalid opcodes in the entire executable region. In
processing block 650 a partial binary translation of the entire
executable region is generated including the encapsulations
of binary translations and state recovery for the invalid
opcode and any other proximate invalid opcodes together
with any interjacent valid opcodes of the executable region. It
will be appreciated that during generation of the partial binary
translation of the entire executable region, various other opti-
mizations may be carried out. For example saving and restor-
ing of some temporal registers in between encapsulations of
binary translations for proximate invalid opcodes may be
eliminated through intelligent choice of register reuse with-
out changing functionality of the translations, while improv-
ing the overall execution performance of the partial binary
translation.

In processing block 655 the partial binary translation is
stored in a cache memory, e.g. translation cache 126, 226 or
326. Then in processing block 660, an indicator of the partial
binary translation associated with the invalid opcode is stored
to facilitate re-executing the partial binary translation upon
future detections of the invalid opcode, and a branch is taken
to execute the partial binary translation.

FIG. 7 illustrates a flow diagram for another alternative of
a process 701 to use dynamic partial binary translation func-
tionality to provide ISA virtualization. In processing block
710 of process 702 the next sequential instruction of a portion
of a thread is fetched. In processing block 715, it is deter-
mined if the instruction has an invalid opcode. If not, the
instruction will be executed normally in processing block 720
since it is a valid instruction of the second ISA, e.g. 118 or
218, after which processing will reiterate beginning with
processing block 710. Thus processing remains in process
702, which represents the normal machine execution environ-
ment context—openly accessable to the operating system and
application programmers. Otherwise, if the instruction has an
invalid opcode, i.e. according to the second ISA, processing
proceeds to processing block 725 of process 703 where the
instruction may be disassembled to see if it needs to be trans-
lated. Process 703 represents an exclusive machine execution
environment context—not openly accessable to the operating
system and application programmers, e.g. 104, 204 or 304. In
processing block 730 a determination is made whether or not
the instruction needs to be translated. If the instruction is an
invalid instruction in the instruction set of the first ISA, e.g.
114 or 214, then processing returns to the context of process
702 and processing block 720 where the instruction is
handled normally, i.e. causing an invalid opcode exception. If
the instruction is a valid instruction in the instruction set of the
first ISA but has already been translated processing proceeds
in processing block 745 by executing the corresponding par-
tial binary translation from the translation cache, e.g. 126,
226 or 326. Otherwise, if the instruction is a valid instruction
in the instruction set of the first ISA and has not already been
translated processing proceeds in processing block 735 where
a partial binary translation is generated for the entire execut-
able region of the instruction, e.g. by translation runtime
environment 130, 230 and/or 330 as in processing blocks
430-450 and/or 630-650. Then in processing block 740 par-
tial binary translation is stored to a translation cache, e.g. 126,
226 or 326, and a branch is taken to the partial binary trans-
lation. Processing then proceeds to processing block 745 of
process 704 where the partial binary translation is executed.
Process 704 represents the emulation execution environment
context wherein the first ISA is being virtualized—executable

US 9,141,361 B2

13

only from within the exclusive context of process 703 and
directly accessed from the translation runtime environment,
state recovery mechanism and the partial binary translation
code itself. In processing block 750 it is determined whether
or not an exception or other interruption has occurred within
the partial binary translation context of process 704. If so
processing proceeds to processing block 760 where state
recovery is performed. Otherwise a determination is made in
processing block 755 whether execution has reached the end
of the entire executable region. If not processing reiterates
beginning in processing block 745 until the partial binary
translation for the entire executable region has finished
executing, at which point processing proceeds to processing
block 760 where state recovery is performed. Processing then
returns to the normal execution context of process 702 and to
processing block 720.

It will be appreciated that for some embodiments support-
ing instructions of a first processing core using a second
processing core where the first and second cores may use
differing amounts of power during execution of the same
portions of executable threads of instructions provides for
numerous opportunities in saving costs and/or power con-
sumption for some applications, while still supporting fea-
tures of arich native instruction set. For example, the first core
may consume a greater maximum power during normal
operation at maximum frequency and voltage, wherein the
second core may consume a smaller maximum power during
normal operation at maximum frequency and voltage within
design specification for these cores. This may be due to rea-
sons, including the second core having fewer logic elements,
different semiconductor construction, less complex micro-
architectural components, and so forth. Thus the benefits of
cost savings and/or reduced power consumption may be real-
ized by various embodiments of the methods, apparatus and
systems for virtualization of a native instruction set as herein
disclosed.

The above description is intended to illustrate preferred
embodiments of the present invention. From the discussion
above it should also be apparent that especially in such an area
of'technology, where growth is fast and further advancements
are not easily foreseen, the invention can may be modified in
arrangement and detail by those skilled in the art without
departing from the principles of the present invention within
the scope of the accompanying claims and their equivalents.

What is claimed is:
1. A method for partial binary translation, the method com-
prising:

detecting an invalid opcode;

determining if the invalid opcode should be translated;

identifying an executable region containing the invalid
opcode and at least any other proximate invalid opcodes
and interjacent valid opcodes for executing and option-
ally repeatably executing the invalid opcode;

analyzing the executable region to determine at least a first
machine state prior to the execution of the invalid
opcode;

generating a partial translation of the entire executable
region, the partial translation including at least an encap-
sulation of a binary translation of the invalid opcode and
a state recovery mechanism of said first machine state;

storing the partial translation in a cache memory; and

storing an indicator of the partial translation associated
with the invalid opcode.

2. The method of claim 1 wherein the partial translation

includes a jump to the endpoint of the executable region.

25

30

40

45

50

55

65

14

3. The method of claim 2 wherein a subsequent detection of
the invalid opcode causes a branch to the stored partial trans-
lation in an exclusive execution environment.
4. The method of claim 3 wherein said exclusive execution
environment supports the state recovery mechanism.
5. The method of claim 1 further comprising:
branching to the stored partial translation; and
executing the partial translation in an exclusive execution
environment.
6. The method of claim 1 wherein storing an indicator of
the partial translation includes storing a jump to the partial
translation in the executable region.
7. The method of claim 1 wherein storing an indicator of
the partial translation includes introducing an exception to
fetching an instruction of the executable region.
8. The method of claim 1 wherein storing an indicator of
the partial translation includes marking a page to be checked
when fetching an instruction of the executable region.
9. The method of claim 1 wherein storing an indicator of
the partial translation includes introducing a taken branch in
a branch target bufter entry for the cache line of an instruction
of the executable region.
10. The method of claim 1 wherein storing an indicator of
the partial translation includes storing a branch to the partial
translation in another partial translation.
11. An article of manufacture comprising:
a machine-accessible medium including data and instruc-
tions for partial binary translation such that, when
accessed by a machine, cause the machine to:
receive an executable thread portion in a processor, the
executable thread portion including an invalid
opcode;

detect the invalid opcode;

determine if the invalid opcode should be translated;

identify an executable region containing the invalid
opcode and at least any other proximate invalid
opcodes and interjacent valid opcodes for executing
and optionally repeatably executing the invalid
opcode;

analyze the executable region to determine at least a first
machine state prior to the execution of the invalid
opcode;

generate a partial translation of the entire executable
region, the partial translation including at least an
encapsulation of a binary translation of the invalid
opcode and a state recovery mechanism of said first
machine state;

store the partial translation in a cache memory; and

store an indicator of the partial translation associated
with the invalid opcode.

12. The article of manufacture of claim 11 wherein the
partial translation includes a jump to the endpoint of the
executable region in the executable thread.

13. The article of manufacture of claim 12 wherein a sub-
sequent detection of the invalid opcode cause the machine to
branch to the stored partial translation in an exclusive execu-
tion environment.

14. The article of manufacture of claim 13 wherein said
exclusive execution environment supports the state recovery
mechanism.

15. A processor comprising:

an instruction decoder to receive an executable thread por-
tion, and detect an invalid opcode;

a microcode layer disassembler to determine if the invalid
opcode should be translated;

a translation runtime environment to:

US 9,141,361 B2

15

identify an executable region containing the invalid
opcode and at least any other proximate invalid
opcodes and interjacent valid opcodes for executing
and optionally repeatably executing the invalid
opcode,

analyze the executable region to determine at least a first
machine state prior to the execution of the invalid
opcode,

generate a partial translation of the entire executable
region, the partial translation including at least an
encapsulation of a binary translation of the invalid
opcode and a state recovery mechanism of said first
machine state, and

store an indicator of the partial translation associated
with the invalid opcode; and

atranslation cache memory to store the partial translation.

16. The processor of claim 15 wherein the partial transla-
tion includes a jump to the endpoint of the executable region
in the executable thread.

17. The processor of claim 16 wherein a subsequent detec-
tion of the invalid opcode cause the machine to branch to the
stored partial translation in an exclusive execution environ-
ment.

18. The processor of claim 17 wherein said exclusive
execution environment supports the state recovery mecha-
nism.

19. The processor of claim 15 wherein storing an indicator
of the partial translation includes marking a page to be
checked when fetching an instruction of the executable
region.

20. The processor of claim 15, said translation runtime
environment also to:

branch to the stored partial translation; and

execute the partial translation in an exclusive execution

environment.

21. A multi-core processor comprising:

a first heterogeneous processor core having a first instruc-

tion set; and

a second heterogeneous processor core having a second

instruction set excluding a portion of the first instruction
set, the second heterogeneous processor core including:
an instruction decoder to receive an executable thread
portion, and detect an invalid opcode;
a microcode layer disassembler to determine if the
invalid opcode should be translated;
a translation runtime environment to:
identify an executable region containing the invalid
opcode and at least any other proximate invalid
opcodes and interjacent valid opcodes for execut-
ing and optionally repeatably executing the invalid
opcode,
analyze the executable region to determine at least a
first machine state prior to the execution of the
invalid opcode,
generate a partial translation of the entire executable
region, the partial translation including at least an
encapsulation of a binary translation of the invalid
opcode and a state recovery mechanism of said first
machine state, and
store an indicator of the partial translation associated
with the invalid opcode; and

atranslation cache memory to store the partial translation.

22. The multi-core processor of claim 21 wherein the par-
tial translation includes a jump to the endpoint of the execut-
able region in the executable thread.

10

15

20

25

30

35

40

45

50

55

60

65

16

23. The multi-core processor of claim 22 wherein a subse-
quent detection of the invalid opcode cause the machine to
branch to the stored partial translation in an exclusive execu-
tion environment.

24. The multi-core processor of claim 23 wherein said
exclusive execution environment supports the state recovery
mechanism.

25. The multi-core processor of claim 24 wherein the trans-
lation runtime environment generates the partial translation
including an encapsulation of a binary translation of each
invalid opcode of the entire executable region and a corre-
sponding state recovery mechanism of each corresponding
machine state.

26. The multi-core processor of claim 25 wherein said
exclusive execution environment supports dynamic state
recovery for the encapsulation of a binary translation of each
invalid opcode based on the corresponding state recovery
mechanism and a corresponding instruction pointer for the
encapsulation.

27. The multi-core processor of claim 26 wherein upon
successful completion or interruption in said exclusive execu-
tion environment, a global jump to the corresponding instruc-
tion pointer for the encapsulation successfully completed or
interrupted is performed with a side effect of the correspond-
ing state recovery mechanism.

28. The multi-core processor of claim 27 wherein upon
interruption in said exclusive execution environment, said
global jump to the corresponding instruction pointer for the
interrupted encapsulation and the side effect of the corre-
sponding state recovery mechanism presents, through virtu-
alization, as an interruption in the first heterogeneous proces-
sor core on an instruction boundary.

29. The multi-core processor of claim 21 wherein storing
an indicator of the partial translation includes marking a page
to be checked when fetching an instruction of the executable
region.

30. The multi-core processor of claim 21, said translation
runtime environment also to:

branch to the stored partial translation; and

execute the partial translation in an exclusive execution

environment.

31. A computing system comprising:

an addressable memory to store a first executable thread

portion encoded in a first instruction set; and

a multiprocessor including:

a first heterogeneous processor core to execute the first
instruction set; and
a second heterogeneous processor core having a second
instruction set excluding a portion of the first instruc-
tion set, the second heterogeneous processor core
including:
an instruction decoder to receive an executable thread
portion, and detect an invalid opcode;
a microcode layer disassembler to determine if the
invalid opcode should be translated;
a translation runtime environment to:
identify an executable region containing the invalid
opcode and at least any other proximate invalid
opcodes and interjacent valid opcodes for
executing and optionally repeatably executing
the invalid opcode,
analyze the executable region to determine at least
a first machine state prior to the execution of the
invalid opcode,
generate a partial translation of the entire execut-
able region, the partial translation including at
least an encapsulation of a binary translation of

US 9,141,361 B2

17

the invalid opcode and a state recovery mecha-
nism of said first machine state, and
store an indicator of the partial translation associ-
ated with the invalid opcode; and
a translation cache memory to store the partial transla-
tion.

32.The system of claim 31, wherein a subsequent detection
of the invalid opcode cause the machine to branch to the
stored partial translation in an exclusive execution environ-
ment.

33. The system of claim 32 wherein said exclusive execu-
tion environment supports the state recovery mechanism.

34. The system of claim 33 wherein the translation runtime
environment generates the partial translation including an
encapsulation of a binary translation of each invalid opcode of
the entire executable region and a corresponding state recov-
ery mechanism of each corresponding machine state.

35. The system of claim 34 wherein storing an indicator of
the partial translation includes marking a page to be checked
when fetching an instruction of the executable region.

36. The system of claim 31, said translation runtime envi-
ronment also to:

branch to the stored partial translation; and

execute the partial translation in an exclusive execution

environment.

10

20

25

18

